Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The Witt algebra $${\mathfrak{W}}_{n}$$ is the Lie algebra of all derivations of the $$n$$-variable polynomial ring $$\textbf{V}_{n}=\textbf{C}[x_{1}, \ldots , x_{n}]$$ (or of algebraic vector fields on $$\textbf{A}^{n}$$). A representation of $${\mathfrak{W}}_{n}$$ is polynomial if it arises as a subquotient of a sum of tensor powers of $$\textbf{V}_{n}$$. Our main theorems assert that finitely generated polynomial representations of $${\mathfrak{W}}_{n}$$ are noetherian and have rational Hilbert series. A key intermediate result states polynomial representations of the infinite Witt algebra are equivalent to representations of $$\textbf{Fin}^{\textrm{op}}$$, where $$\textbf{Fin}$$ is the category of finite sets. We also show that polynomial representations of $${\mathfrak{W}}_{n}$$ are equivalent to polynomial representations of the endomorphism monoid of $$\textbf{A}^{n}$$. These equivalences are a special case of an operadic version of Schur–Weyl duality, which we establish.more » « less
- 
            Abstract Using the theory of $${\mathbf {FS}} {^\mathrm {op}}$$ modules, we study the asymptotic behavior of the homology of $${\overline {\mathcal {M}}_{g,n}}$$ , the Deligne–Mumford compactification of the moduli space of curves, for $$n\gg 0$$ . An $${\mathbf {FS}} {^\mathrm {op}}$$ module is a contravariant functor from the category of finite sets and surjections to vector spaces. Via copies that glue on marked projective lines, we give the homology of $${\overline {\mathcal {M}}_{g,n}}$$ the structure of an $${\mathbf {FS}} {^\mathrm {op}}$$ module and bound its degree of generation. As a consequence, we prove that the generating function $$\sum _{n} \dim (H_i({\overline {\mathcal {M}}_{g,n}})) t^n$$ is rational, and its denominator has roots in the set $$\{1, 1/2, \ldots, 1/p(g,i)\},$$ where $p(g,i)$ is a polynomial of order $O(g^2 i^2)$ . We also obtain restrictions on the decomposition of the homology of $${\overline {\mathcal {M}}_{g,n}}$$ into irreducible $$\mathbf {S}_n$$ representations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
